Strategies for processing images with 4D-Var data assimilation methods
نویسندگان
چکیده
Data Assimilation is a well-known mathematical technic used, in environmental sciences, to improve, thanks to observation data, the forecasts obtained by meteorological, oceanographic or air quality simulation models. It aims to solve the evolution equations, describing the dynamics of the state variables, and an observation equation, linking at each space-time location the state vector and the observations. Data Assimilation allows to get a better knowledge of the actual system's state, named the reference. In this article, we rst describe various strategies that can be applied in the framework of variational data assimilation to study various image processing issues. Second, we detail the mathematical setting and the analysis of pros and cons of each strategy for the issue of motion estimation. Last, results are provided on synthetic images and satellite acquisitions. Key-words: image processing, inverse problems, data assimilation, non linear advection, optical ow ∗ INRIA, CEREA, joint laboratory ENPC EDF R&D, Université Paris-Est † Université Pierre et Marie Curie, LIP6 in ria -0 05 46 22 2, v er si on 2 17 D ec 2 01 0 Stratégies pour le traitement d'images avec des méthodes d'assimilation de données 4D-Var Résumé : L'assimilation de données est un outil largement utilisé dans les sciences de l'environnement pour améliorer, au moyen de données d'observation, les prédictions obtenues par les modèles de simulation. Elle s'applique en météorologie, en océanographie et en qualité de l'air, par exemple. L'assimilation de données permet de résoudre les équations d'évolution, décrivant la dynamique des variables d'état du modèle, et les équations d'observation, qui lient le vecteur d'état et les observations. Dans cet article, nous décrivons plusieurs stratégies d'assimilation d'images, dans le contexte de la formulation faible de l'assimilation variationnelle. Nous détaillons ensuite les équations mathématiques de ces stratégies et nous analysons leurs avantages et défauts respectifs pour une application à l'estimation du mouvement. Des résultats sont fournis sur des données synthétiques et des images satellite. Mots-clés : traitement d'images, problèmes inverses, assimilation de données, advection non linéaire, ot optique in ria -0 05 46 22 2, v er si on 2 17 D ec 2 01 0 Strategies for processing images with 4D-Var 3
منابع مشابه
The ROMS IAS Data Assimilation and Prediction System: Quantifying Uncertainty
1. To develop a state-of-the-art ocean 4-dimensional variational (4D-Var) data assimilation and ocean forecasting system for the Regional Ocean Modeling System (ROMS); 2. To develop a state-of-the-art suite of post-processing and diagnostic tools in support of ROMS 4D-Var; 3. To gain the necessary experience using the ROMS 4D-Var systems in complex circulation environments; 4. To train the next...
متن کاملFour-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)
A four-dimensional ensemble variational (4D-EnVar) data assimilation has been developed for a limited area model. The integration of tangent linear and adjoint models, as applied in standard 4D-Var, is replaced with the use of an ensemble of non-linear model states to estimate fourdimensional background error covariances over the assimilation time window. The computational costs for 4D-En-Var a...
متن کاملReduced-order 4D-Var: a preconditioner for the Incremental 4D-Var data assimilation method
This study demonstrates how the incremental 4D-Var data assimilation method can be applied efficiently preconditioned in an application to an oceanographic problem. The approach consists in performing a few iterations of the reduced-order 4D-Var prior to the incremental 4D-Var in the full space in order to achieve faster convergence. An application performed in the tropical Pacific Ocean, with ...
متن کاملA Dual-Weighted Approach to Order Reduction in 4D-Var Data Assimilation
Strategies to achieve order reduction in four dimensional variational data assimilation (4D-Var) search for an optimal low rank state subspace for the analysis update. A common feature of the reduction methods proposed in atmospheric and oceanographic studies is that the identification of the basis functions relies on the model dynamics only, without properly accounting for the specific details...
متن کاملDiscussion on ‘4D-Var or EnKF?’
The development of data assimilation techniques for numerical weather prediction has been very successful ever since the early 1950s until now, starting with simple two-dimensional and univariate spatial interpolation techniques like the successive corrections (SC, Bergthorsson and Döös, 1955) ending up with the four-dimensional variational data assimilation (4D-Var, Rabier et al., 2000) and en...
متن کامل